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Abstract. The aim of a process discovery algorithm is to construct from event
data a process model that describes the underlying, real-world process well. Intu-
itively, the better the quality of the input event data, the better the quality of the
resulting discovered model should be. However, existing process discovery algo-
rithms do not guarantee this relationship. We demonstrate this by using a range of
quality measures for both event data and discovered process models. This paper
is a call to the community of IS engineers to complement their process discov-
ery algorithms with properties that relate qualities of their inputs to those of their
outputs. To this end, we distinguish four incremental stages for the development
of such algorithms, along with concrete guidelines for the formulation of relevant
properties and experimental validation. We use these stages to reflect on the state
of the art, which shows the need to move forward in our thinking about algorith-
mic process discovery.

Keywords: Process mining · process discovery · formal guarantees · properties.

1 Introduction

Process mining focuses on the extraction of process-related information from event
logs, a collection of sequences of actions, each encoding a historical process execu-
tion [1]. Process discovery is a core area in process mining. It studies algorithms that,
given an event log, construct process models that aim to describe the corresponding true
process that induced the event log as closely as possible. One of the main challenges
in process discovery is that the true process is unknown, and has to be inferred from a
sample observed and recorded in the event log [10].

An algorithm is a sequence of computational steps that transform a given input into
some output [11]. Different algorithms exhibit different properties, for example, cor-
rectness, finiteness, definiteness, effectiveness, and efficiency. Such properties allow us
to choose an algorithm that fulfills a certain need, such as performing a guaranteed
correct computation within the desired time bounds. A process discovery algorithm
transforms a given input event log into an output process model. We usually expect
that a process discovery algorithm is finite (terminates after a finite number of com-
putational steps), definite (each computational step is unambiguous), effective (each
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computational step can be performed correctly in a finite amount of time), and efficient
(the fewer or faster computation steps can be executed the better). However, process
discovery algorithms treat quality as a goal rather than a guarantee. That is, process
discovery algorithms are designed to construct a “good” process model from the input
event log [1], where the “goodness” of the model is not established by the internals of
the algorithm, but by external measures, e.g., precision and recall.

In this paper, we recommend refining the process discovery goal. Our recommen-
dation is triggered by the observation that a process discovery algorithm can construct
a good model from an event log yet discover a worse model from another event log
of better quality [23]. We argue that process discovery algorithms should come with
guarantees formulated in terms of the relationship between the quality of its inputs and
outputs. The present paper makes these contributions:

◦ We propose measures for the quality of event logs, both in the presence and ab-
sence of a true process. In the former case, we use standard conformance checking
measures, while in the latter case we rely on sampling techniques and measures as
studied in statistics;

◦ We provide empirical evidence that existing process discovery algorithms can con-
struct good models from event logs and, at the same time, produce poor models
from better logs;

◦ We propose four stages for process discovery algorithms to guarantee the intuitively
appealing dependency between the quality of input event logs and the quality of
output process models.

We believe that a next step in the evaluation of process discovery algorithms is nec-
essary for the field to advance. Several benchmarks (cf. [5]) have identified process
discovery algorithms that “glitter”, that is, algorithms that produce high-quality mod-
els on a limited collection of event logs. We argue that such benchmarks should be
complemented with formal analyses to provide quality guarantees with the algorithms,
extending the current state-of-the-art evaluation with statistical methods to establish a
relation between log and model quality. We invite the process mining community to
contribute to the discussion of the maturity of process discovery algorithms. In addi-
tion, we encourage the authors of existing and future discovery techniques to establish
the proposed guarantees.

The remainder of the paper is structured as follows. The next section introduces
the intuition why process discovery algorithms need to provide guarantees. A statistical
approach to establish event log quality is introduced in Section 3. The proposed four
stages of process discovery algorithms are presented in Section 4, together with empir-
ical evidence that algorithms do not provide such guarantees yet. Last, Sections 5 and 6
are devoted to related work, and conclusions, respectively.

2 Setting the Stage

2.1 Process Discovery and Conformance Checking

Process mining projects often start by assuming that some underlying process gener-
ates an event log that can be observed, recorded, and used for process discovery. We
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refer to this underlying entity as the true process. The true process is, however, often
unknown [10]. Hence, it can only be approximated. Therefore, based on the observed
log, process discovery algorithms aim to construct a process model that describes the
true process well. Formally, given a set of activities A, an event log L is defined as a
multiset over finite sequences, called traces, over A. A discovery algorithm disc can
be described as a relation disc ⊆ L(A) × 2M(A), where L(A) andM(A) are the uni-
verse of all possible logs and the universe of all models over A, respectively. Some
algorithms, such as the ILP-miner [31], are non-deterministic, i.e., applying a process
discovery algorithm may yield different results for the same input log.

To measure how well the discovered process models describes the behavior recorded
in the event log, different conformance measures have been proposed [28]. Precision is
a function prec : L(A)×M(A)→ [0, 1] that quantifies the fraction of behavior allowed
by the model that was actually observed. Recall is a function rec : L(A) ×M(A) →
[0, 1] that quantifies the observed behavior allowed by the model. For both measures,
the value of one denotes perfect conformance between the log and model. As shown
in [23,26], the entropy-based precision and recall measures satisfy all the requirements
for this class of measures proposed in [23, 26–28].

Process discovery algorithms are often designed with a specific quality goal in mind.
Several algorithms have rediscoverability as their goal: if the unknown, true process
that generated the event log has specific properties, and the event log satisfies certain
criteria, then the algorithm discovers the true process. For example, the α-miner has
the rediscoverability property for structured workflow nets, imposing log completeness
as criterion [3]. Similarly, the Inductive Miner [17] can rediscover process trees under
the assumption of activity completeness, i.e., every leaf in the tree should occur at least
once in the event log. Other algorithms take different approaches, e.g., to return a model
that scores best on one or more conformance measures (e.g., [13, 29, 31]).

2.2 Relating Log Quality and Model Quality

Event logs used as inputs to process discovery algorithms are often assumed to be faith-
ful representations of the true processes. Let us reflect on the consequences of this
assumption. Consider Fig. 1. Assume some event log L is a faithful representation of
some true process TP . In other words, L has a high model quality PT , measured in
terms of precision and recall between L and TP . The true process TP is executed
continuously, thus generating a stream of events, from which L is a snapshot [16, 28].
Therefore, L can be seen as a sample from this stream. Potentially, samples of L can
be faithful representations of TP as well. Let S be a sample of L. As it is a sample,
the field of statistics provides methods to assess the quality e of the sample with respect
to L. And, because S is an event log itself, it can be used to discover some model M ,
which has quality PS , again measured in terms of precision and recall, but this time
between S and M . Then, if S is a good representation of log L, a process discovery
algorithm should construct a model with a quality that approaches PT .

Now, draw two samples from L, say S1 and S2. For S1, model M1 is discovered,
with model quality PS1 , and for S2 a model M2 is discovered, with model quality
PS2 . Suppose S1 has a higher sample quality than S2. In other words, S1 is a better
representation for L than S2. Intuitively, the quality of M1 should then also be closer



4 J.M.E.M. van der Werf, A. Polyvyanyy et al.

generate

True process 𝑇𝑃

discover

𝒫𝑇

𝒫𝑆

𝑒

Event log 𝐿

Sample log 𝑆Discovered process 𝑀

Fig. 1. A true process TP generates an event log L with unkown quality PT . Any sample S
drawn from L has some error e. Discovering a model from S results in a model with quality PS .

to PT than the quality of M2. In other words, if e(S1) ≥ e(S2) then one should expect
that PS1 ≥ PS2 . Hence, it is desirable that the process discovery algorithm guarantees
that better quality logs result in better quality models.

In real-life situations, the true process that generated the event log is unknown. In
most process mining methods (cf., [9, 14]) the event log is prepared, and then process
discovery techniques are applied to unravel a process model. An important concern that
these methods do not address relates to the internal validity of process mining projects:
if the process is repeated on a new observation, i.e., a new event log, to what degree do
the results agree between the analyses? For this property, i.e., test-retest reliability, the
guarantees of a process discovery algorithm come into play. If the different samples are
of similar quality, then the constructed models should be of similar quality. However,
current process discovery algorithms do not explicitly claim to provide such guarantees.

3 Sampling to Measure Log Quality

A necessary step in providing guarantees on the results of process discovery algorithms
is to establish measures for log quality. We argue that any event log can be studied as a
random sample of traces generated by the true process. Similar to [28], the true process
can be represented as a set of traces with some trace likelihood function that assigns a
probability to each trace. Consequently, any sample of an event log is again a sample of
the true process, as proposed in [16]. We consider a sample log S of an event log L to be
a subset of the traces observed in the event log, i.e., S(σ) ≤ L(σ), for all traces σ ∈ L,
and S(σ) = 0 if σ 6∈ L. This allows drawing different samples from a given event log,
and then comparing these samples with the event log to analyze the quality of these
samples. Currently, little is known about the representativeness or quality of random
samples in process mining [16,30]. In the remainder of this section, we propose random
sampling techniques to be used in process mining and provide measures to analyze the
quality of a sample with respect to the original event log.
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3.1 Sampling Techniques

In this section, we propose three probability sampling techniques that can be used to
draw a sample from an event log, where each trace in the event log has equal probability
of being sampled. Consequently, samples from these techniques can be used to estimate
characteristics of the event log, and, thus, of the true process.

The first technique is simple random sampling, where a sample is created by ran-
domly including traces with a predetermined sampling ratio. The second technique is
stratified sampling, where the data is divided into unique groups, called strata. For pro-
cess discovery, these groups can be formed based on unique traces. Then, a simple
random sample is taken from each group. In theory, this sampling technique would give
more representative samples because of stratification on unique traces. However, one
has to be careful when applying stratified sampling: as only a natural number of traces
can be added to a sample, a trace can only be added fully or not at all. Hence, a prob-
lem occurs if a stratum contains fewer traces than there are expected to be sampled.
To solve this, rounding using the half to even rule (cf. IEEE 754) can be used, which
rounds halves to the nearest even integer, while still rounding other decimal numbers to
the nearest integer. No literature exists on the topic of using stratified sampling in the
area of process discovery [30].

An extension of stratified sampling is an approach we call stratified squared sam-
pling. First, a stratified sample is drawn. Then the number of sampled traces is com-
pared to the number of expected traces based on the sampling ratio. Due to rounding,
the number of expected traces can be greater than the number of actually added traces.
If this happens, the uncovered strata are sorted based on their frequency, and a trace of
each of these strata is added, until the number of sampled traces matches the expected
number of traces, or all strata are covered.

3.2 Towards Sample Quality Measures for Process Mining

Event logs describe the behavior of a system in terms of traces of events. As in [16],
we define behavior as the directly-follows relation induced from the event log L. The
directly-follows relation >L is defined on pairs of events a and b, such that a >L b iff
the event log L contains a trace in which the two activities a and b occur consecutively.
A first measure to compare a sample to its original event log is existential complete-
ness, i.e., the extent to which all possible directly-follows relations are present. This
results in the first sample quality measure: coverage, which is defined by the proportion
of unique directly-follows relations present in the sample and the number of unique
directly-follows relations in the event log.

Coverage does not take the occurrence frequency of behavior into account. Differ-
ent methods exist to measure frequency representativeness. In statistics, error measures
are used to quantify the error between the expected values and the real occurrences. We
propose to adapt these error measures to quantify the error between the behavior ob-
served in a sample, and the expected behavior from the event log based on the sampling
ratio. This results in several measures for sample quality, where e denotes the expected
behavior, and s denotes the sampled behavior as vectors of length n:
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The Normalised Mean Absolute Error (NMAE) calculates the normalized absolute
deviation (i.e. error) of the number of occurrences of each unique directly-follows
relation of the sample from their respective expected frequency:

NMAE =
MAE
avg e

=

∑n
i=1 |si − ei|∑n

i=1 ei
(1)

Normalised Root Mean Square Error (NRMSE) is similar to NMAE, but uses the
root of the squared values, instead of the absolute values, thus penalising large
deviations more heavily:

NRMSE =
RMSE
avg e

=

√
1
n

∑n
i=1(si − ei)2

1
n

∑n
i=1 ei

(2)

The Symmetric Mean Absolute Percentage Error (sMAPE) is a symmetric variation
of the NMAE, expressed as a percentage error, with the advantage that the under-
sampling of behavior is penalised more heavily:

sMAPE =
1

n

n∑
i=1

|ei − si|
ei + si

(3)

The Symmetric Root Mean Square Percentage Error (sRMSPE) is similar to sMAPE,
using the root mean square error instead of the mean absolute error, thus penalising
large deviations more heavily:

sRMSPE =

√√√√ 1

n

n∑
i=1

(
ei − si
ei + si

)2

(4)

For a detailed evaluation of the above measures, we refer the reader to [30]. These
measures assess the behavioral quality of a sample with respect to the event log it is
drawn from. In other words, these measures provide ways to establish the quality of the
input of process discovery algorithms.

4 Designing Process Discovery Algorithms with Guarantees

As observed in a study on the quality of conformance measures [23], some process
discovery algorithms have a large variability in the quality of the constructed process
models, though the used measures satisfy the properties proposed in [27, 28]. In par-
ticular, given different samples of a single event log, the same algorithm sometimes
provides good results on small samples, while on larger samples, the algorithm discov-
ers worse models. On further inspection, these algorithms are state of the art, and do
not perform any major “process mining crimes” [24]. In addition, they “glitter” in the
benchmark study reported in [5].

We consider this observation a threat to the application of process mining, partic-
ularly for its repeatability and, hence, the reliability of its results. Suppose for a true
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process several event logs are captured and analyzed, and the results do not agree, i.e.,
they differ largely in quality. Several explanations for this phenomenon are possible.
A first explanation could be the quality of the input, i.e., the quality of the event logs
differed significantly. However, as the observation highlights, another plausible – yet
undesirable – explanation lies in the process discovery algorithm itself. In other words,
if the process discovery algorithm does not provide any guarantees on the quality of the
resulting models, it is impossible to exclude the algorithm as a root cause.

Consequently, we advocate process discovery algorithms to provide guarantees on
the quality of the produced results. To this end, we propose to distinguish four stages
during the introduction of a process discovery algorithm:
1. The algorithm is well designed;
2. The algorithm is validated on real-life examples;
3. The algorithm has an established relationship between the log and model quality;
4. The algorithm is effective.

Though the first two stages are basic, not all algorithms make it to the second stage, as
illustrated later. Arguably, algorithms that are shown not to pass the second stage should
not be used in empirical studies. The third and fourth stages are entirely novel for pro-
cess discovery. Once the algorithm is shown to be applicable on real-life examples, the
authors should study which guarantees their algorithm provides in a controlled setting
where the true process is known. To pass the last stage, the algorithm should provide
evidence that in settings where the true process is unknown, the algorithm provides the
guarantees stated at stage 3.

4.1 Stage 1: The Algorithm is Well Designed

In the first stage, the developers of a process discovery algorithm should properly intro-
duce their algorithm. For this, the developers need to provide the following:
◦ The class of process models the algorithm constructs;
◦ Evidence for meeting the quality goals of the algorithm;
◦ Criteria on the logs, e.g., requirements on the true process that generates the logs;
◦ An initial evaluation on artificial data sets.

Most process discovery algorithms satisfy the requirements of this stage. For example,
the ILP-miner [31] is designed for the class of classical Petri nets with interleaving
semantics. It is proven to always return a Petri net with a perfect recall score. It imposes
no requirements on the input event logs and is tested on artificial logs. Also, the α-
miner [3] algorithm is at least in this stage. It is designed for well-structured Workflow
nets with rediscoverability as a goal. It imposes two requirements on an input event
log: it should contain all directly-follows relations present in the true process, and the
true process should be block-structured. A similar argument holds for the Inductive
Miner [17].

4.2 Stage 2: The Algorithm is Validated

Even though an algorithm may be well designed, i.e., it passes stage 1, it is not guaran-
teed that it works in practice. The second stage in introducing the algorithm is, therefore,
the validation of the algorithm on a collection of real-life event logs, such as used in the
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Algorithm 1: Establish Relation
1 while True do
2 TP ← GenerateModel(M, A);
3 foreach i ∈ [1..N ] do
4 L← GenerateLog(TP , T );
5 PT ← calcModelQuality(L, TP);
6 foreach r ∈ ratios do
7 foreach j ∈ [1..K] do
8 S ← DrawSample(L, r);
9 e← calcSampleQuality(L, S);

10 M ← DiscoverModel(S);
11 PS ← calcModelQuality(S, M );

Algorithm 2: Test Effectiveness
1 foreach L ∈ Benchmark do
2 foreach r ∈ ratios do
3 foreach j ∈ [1..K] do
4 S ← DrawSample(L, r);
5 e← calcSampleQuality(L, S);

6 M ← DiscoverModel(S);
7 PS ← calcModelQuality(S, M );

benchmark reported in [5]. Several algorithms fail to reach this stage. For example, the
α-miner is theoretically a robust algorithm, but the requirements it imposes on the true
process are too strong for application in real-life situations. Similarly, the ILP-miner is
designed from a theoretical point of view and has limitations for practical use, primarily
because of its guaranteed recall and runtime performance. Other algorithms, such as the
Inductive Miner [17], the Declare Miner [19] and the Split Miner [4] have been applied
successfully on several real-life event logs, and thus pass this stage.

4.3 Stage 3: An Established Relationship Between Log and Model Quality
Although passing stage two shows the algorithm’s capabilities, this does not provide
any guarantees on the quality of the algorithm’s output. As a first step in establishing a
relationship between the log and model quality, it needs to be shown to what degree the
algorithm satisfies the guarantees as sketched in Fig. 1. In other words, the designers
need to show that if an event log is a faithful representation of a true process, as per
measure PT , then the algorithm should satisfy properties similar to those listed below:
P1. For a sample log S that approaches the perfect quality, the quality PS of the dis-

covered model from S approaches PT ;
P2. For two samples S1 and S2, if sample S1 has a higher quality than S2, then the

model quality PS1 is higher than PS2 .
Algorithm designers can choose different strategies to provide evidence for these

properties. The most potent form of evidence is a formal proof that the algorithm sat-
isfies these properties for specific instantiations of log and model quality measures. In
that way, a relationship between an input log quality and the resulting model quality can
be established. We also encourage algorithm designers to define algorithm-specific log
quality measures. If a formal proof is not feasible, instead, statistical evidence of these
properties can be provided. For this, we propose a controlled experiment as outlined in
Algorithm 1. Such a controlled experiment follows the approach shown in Fig. 1. It re-
quires the algorithm designers to have a model generator for the class of true processes
the algorithm accepts. The algorithm then generates repeatedly for a true process one
or more event logs, and for each event log a set of samples.

We propose to use statistical tests to evaluate the two properties. Property P1 needs
an analysis of the relation between the expected PT and the observed PS . For property
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Table 1. Results of the controlled experiment. The last 10 columns show the Spearman rank
correlation between the error measures, and precision and recall. All bold values are statistically
significant (p < 0.001).

True Process Precision Recall
Model prec. recall Cov. sMAPE sRMSPE NRMSE NMAE Cov. sMAPE sRMSPE NRMSE NMAE

1 0.538 1.000 0.658 -0.988 -0.986 -0.988 -0.989 0.338 -0.356 -0.354 -0.354 -0.356
2 0.797 1.000 0.470 -0.986 -0.985 -0.901 -0.954 0.154 -0.051 -0.052 0.012 -0.004
3 0.935 1.000 0.781 -0.990 -0.989 -0.975 -0.984 0.637 -0.406 -0.417 -0.410 -0.412
4 0.953 1.000 0.705 -0.991 -0.992 -0.984 -0.987 -0.103 0.105 0.108 0.081 0.090
5 0.988 1.000 0.540 -0.983 -0.981 -0.980 -0.986 0.437 -0.201 -0.206 -0.207 -0.201
6 0.871 1.000 0.532 -0.934 -0.938 -0.917 -0.926 -0.529 0.973 0.962 0.963 0.968
7 0.943 1.000 0.511 -0.991 -0.989 -0.986 -0.989 0.456 -0.242 -0.240 -0.228 -0.231
8 0.616 1.000 0.773 -0.992 -0.991 -0.989 -0.990 0.114 -0.148 -0.154 -0.156 -0.157
9 0.710 1.000 0.519 -0.981 -0.978 -0.970 -0.973 0.518 -0.327 -0.330 -0.340 -0.341

10 0.883 1.000 0.703 -0.982 -0.982 -0.977 -0.976 0.116 -0.022 -0.027 -0.016 -0.023

P2, the Spearman rank correlation can be used to test whether there is a strong correla-
tion between the sample quality and the model quality. If this is the case, then statistical
evidence has been provided for the relationship between log and model quality.

Example Evaluation. As an example, the controlled experiment has been implemented
in ProM 3 for the Inductive Miner [17]. To calculate precision and recall, an implemen-
tation of exact matching entropy-based measures in Entropia is used [21]. For each true
process, a single event log with 5,000 traces has been generated. The event logs were
10 times sampled for 12 sampling ratios: 0.01, 0.02, 0.05, and 0.1 up to 0.9.

The results are shown in Tbl. 1 and Fig. 2. From Fig. 2 we conclude that property
P1 holds for precision and recall. For each model that describes the true process, the
Spearman rank correlation is calculated between each of the log quality measures and
precision, and similarly for recall. As for the measures sMAPE, sRMSPE, NRMSE,
and NMAE, 0 is the best quality, a negative correlation indicates the required guarantee
that samples of higher quality result in better discovered models, whereas for coverage,
a positive correlation indicates this result. As can be seen in the table, the experiment

3 The source code is available on: https://github.com/ArchitectureMining/SamplingFramework
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generates mixed results. Though property P2 holds for precision, it is not satisfied for
recall. Hence, we can conclude that the Inductive Miner satisfies the two properties for
precision, but fails to do so for recall on the second property.

4.4 Stage 4: The Algorithm is Effective

An established relationship between log and model quality, the essence of stage 3, does
not guarantee the algorithm to be effective in real-life situations. The main caveat in
the controlled environment of the previous stage is that the true process is known. Each
event log is generated from the known true processes. In real-life situations, the true
process is unknown, and, hence, may invalidate assumptions of the discovery algorithm.
For example, the Inductive Miner assumes event logs to be generated from process trees.
However, no criteria are given to test whether an event log is generated by a process
tree, nor does the algorithm provide any details on the model quality if the assumption
is invalid.

In this stage, the algorithm designer has to validate how effective the algorithm is in
real-life situations. One way to obtain insights into the effectiveness of the algorithm is
to apply sampling on a benchmark. This benchmark can be a set of well-known real-life
event logs as used in [5], or can be generated automatically, if the designers ensure that
the class of generated models is larger than the class of true processes studied in the
previous stage. The algorithm designers need to analyze property P2 in the absence of
a true process. In other words, even if the true process is unknown, event logs of better
quality should return better quality models. This may result in an experiment as outlined
in Algorithm 2.

The analysis of property P2 in the absence of a true process can have two possible
outcomes. Either it is shown that the algorithm has the desired property, or, if this is
not possible, the algorithm should be further improved, or provide additional log qual-
ity measures, that guarantee that an event log satisfies the assumptions of the process
discovery algorithm.

Example Evaluation. As an example of the analysis in stage 4, we conducted the
proposed experiment on the Inductive Miner [17]. Two real-life event logs have been
selected, the Road Traffic Fine event log [12] and the Sepsis event log [20]. The Road
Traffic Fine log has in total 150,370 traces and 561,470 events. There are 231 unique
traces and 11 unique event types. The Sepsis log consists of 1,049 traces, of which 845
are unique, and 15,190 events with 16 unique event types. Sampling was done at the
same sampling ratios as before: 0.01, 0.02, 0.05, and 0.1 up to 0.9. For each ratio, ten
samples were drawn.

The sample quality measures for the Road Traffic Fine log are shown on the left
in Fig. 3. As the plot shows, the larger the sampling ratio, and thus the log size, the
better the quality is (error measures: ρ < −0.9, p < 0.001, coverage: ρ = 0.96,
p < 0.001). Sample size and the conformance measure on precision (Fig. 4) show a
moderate positive correlation (ρ = 0.56, p < 0.001), while there is no correlation be-
tween sampling ratio and recall (ρ = 0.03, p = 0.72). Analyzing the quality measures
with the conformance measures shows a different story. In Fig. 4, the coverage is plotted
against the precision, indicating there is no correlation between coverage and precision.
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Fig. 4. Plots of ratio and precision, and coverage with precision and recall for the Road Traffic
Fine log (left) and the Sepsis Log (right).
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Further analysis revealed no correlations between the sample quality measures and pre-
cision (sMAPE: ρ = −0.19, p = 0.03, sRMSPE: ρ = −0.18, p = 0.051, NRMSE:
ρ = −0.21, p = 0.02, NMAE: ρ = −0.20, p = 0.03, coverage: ρ = 0.17, p = 0.06).
The correlations found for recall show that samples of worse quality result in better
models (sMAPE: ρ = 0.80, p < 0.001, sRMSPE: ρ = 0.79, p < 0.001, NRMSE:
ρ = 0.77, p < 0.001, NMAE: ρ = 0.78, p < 0.001, coverage: ρ = −0.79, p < 0.001).

For the Sepsis log, similar results are found. As indicated by the plots at the right
hand side of Fig. 3, a correlation is found between the sampling ratio and the log qual-
ity measures (for all error measures: ρ < −0.9, p < 0.001, coverage: ρ = 0.59,
p < 0.001). The larger the sampling ratio, the higher the precision is (ρ = 0.57,
p < 0.001), but no correlation was found between sampling ratio and recall (ρ = 0.03,
p = 0.72). A moderate negative correlation was found between the log quality mea-
sures and precision (for the error measures: −0.60 < ρ < −0.50, p < 0.001, coverage:
ρ = 0.59, p < 0.001), while the log quality measures did not show any correlation with
recall (for all measures: −0.04 < ρ < 0.02, p > 0.70).

As the results suggest, there is no clear relation between log and model quality.
Hence, it is with the current measures not possible to conclude that the Inductive Miner
is guaranteed to be effective in real-life situations. As a next step, new log quality mea-
sures should be developed that do establish the required relationship between log and
model quality. The process can then be repeated until sufficient guarantees can be pro-
vided on the effectiveness of the algorithm.

5 Related Work

The statistical approach we propose to establish a relation between log and model qual-
ity relates to event data quality in general, builds upon established properties of confor-
mance measures, and requires sampling techniques on event logs. This section reviews
literature on these topics, and shows how our approach relates to them.

Measuring log quality. As the process mining manifesto articulates, process mining
treats data as first-class citizens [2], and defines four data qualities, of which complete-
ness is studied mostly. For example, [8] identifies four categories of process charac-
teristics and 27 classes of event log quality issues. Most studies on event log quality
focus on the incompleteness of the data. Examples include not having enough informa-
tion recorded in the event log (e.g., missing cases or events) [1, 8], not having recorded
enough behavior in the event log [15], or the traces not being representative of the pro-
cess [15], and noise. Different notions of noise are studied, such as infrequent behavior
that is either incorrect or rare [13]. However, event logs are studied in isolation in these
studies. Instead, we argue to assess the quality of event logs relative to other event logs,
using statistical techniques based on sampling.

Properties of conformance measures. The process mining community has recently ini-
tiated a discussion on which formal properties should “good” conformance measures
satisfy. In [27], the authors proposed five properties for precision measures. For in-
stance, one property states that for two process models that describe all the traces in the
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log, a less permissive model should not be qualified as less precise. By demonstrating
that a measure fulfills such properties, one establishes its usefulness. In [23], the au-
thors strengthened the properties from [27]. For example, according to these properties,
the less permissive model from the example above should be classified as more precise.
In [28], the precision properties from [27] were refined, and further desired properties
for recall and generalization measures were introduced, resulting in 21 conformance
propositions. Finally, in [22], properties for precision and recall measures that account
for the partial matching of traces, i.e., traces that are not the same but share some sub-
sequences of activities, were introduced. The precision and recall measures used in
our evaluations satisfy all the introduced desired properties for the corresponding mea-
sures [23, 26–28].

Sampling in process mining. Sampling has been studied before in process mining, but
never as a systematic approach to evaluate process discovery techniques. A first set of
measures for the representativeness of samples have been proposed in [16]. Their results
show the need for a systematic approach as proposed in this paper.

In [7], a sampling technique specific for the Heuristics Miner is described, claim-
ing that only 3% of the original log is sufficient to discover 95% of the dependency
relations. However, a proper evaluation of this claim has not been provided, nor are the
results generalizable to other process discovery techniques.

A statistical framework based on information saturation is proposed in [6]. Their
approach differs from the probability sampling techniques we propose. Instead of gen-
erating samples that estimate the event log, their approach focuses on creating a suffi-
ciently small sample that contains as much information from the event log as possible.
Consequently, this approach cannot be used to measure sample quality with respect to
the event log.

Several biased sampling techniques are described in [25]. These techniques have
been evaluated on six real-life event logs and three discovery techniques. The evaluation
showed that sampling sometimes improves the F-measure for some of the models. A
similar result on the F-measure was obtained in [18]. Their study applied the Google
PageRank algorithm on event logs to create a representative sample, which reduced the
execution time of the Inductive Miner by half without decreasing the F-measure. As
the F-measure harmonizes precision and recall, and no analysis was performed on the
reasons behind the improvements, it is unclear how sampling influenced the process
discovery results of both studies. Instead of using sampling to improve the quality of
the output, we propose to use probability sampling to analyze the input of algorithms,
and to establish a relationship between log and model quality. This relationship then
allows one to explore why some samples give better models than other samples.

6 Conclusion

This paper identifies the need for process discovery algorithms with guarantees that
characterize the dependency between the quality of input event logs and the quality
of the process models constructed from these event logs. In particular, we argue that
process discovery algorithms should produce better models from better input logs. Cur-
rently, process discovery algorithms have never provided such guarantees, since, so far,
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we, as a community, lacked a theoretical foundation to establish such a relationship.
In this paper, for the first time, measures for the statistical sample quality for ranking
the quality of event logs are proposed. We recommend using grounded conformance
checking measures for assessing the quality of the discovered models. Combining log
quality measures with conformance measures provides a framework to formally define
properties that express the desired guarantee that better event logs result in better mod-
els. These properties can be instantiated with various measures for quality of event logs
and process models and be less or more pronounced, for example, imposing a strictly
increasing or non-decreasing relation, or requiring a statistical association of a certain
degree between the qualities of the corresponding logs and models. To overcome this
problem, we propose four stages in the design of an algorithm. Each design comes with
additional properties and obligations to establish effective algorithms with guarantees.

We invite the process mining community to further contribute to the discussion of
desired qualities for process discovery algorithms to ensure that state-of-the-art algo-
rithms fulfill them, and in this way, advance the field of process discovery as well as the
design and evaluation of such algorithms.
Acknowledgments. Artem Polyvyanyy was in part supported by the Australian Re-
search Council project DP180102839.
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